
Parallel NFS

sambaXP 2008

Göttingen, 18.04.2008

Dr. Oliver Tennert, Head of Technology

2

Overview

• Motivation: Why Parallel NFS?

• What is pNFS?

• How does it work?

• Some numbers…

3

Siberia 30.06.1908

• massive explosion in Tunguska Region,

Central Siberia

• 2,150 km2 devastated

• 60-80 million trees felled within

seconds

• est. 5,0 earthquake from the blast

• most probable explanation:

• crash of massive meteorite

• physical mass: about 10,000 tons

• detonation in 10 km altitude

• at a speed of about 70,000 km/h

• equivalent of 10-15 megatons TNT

4

High Performance Computing

Source: www.sandia.gov

5

Storage Demands in HPC

• need for computing power

• due to need to run larger and more accurate models

• more CPUs, more cores, more nodes, more RAM

• need for network performance

• more highly paralellized jobs

• high-speed interconnects (10GbE, InfiniBand,...)

→ massive explosion of data sets

→ demand for

• large storage capacity

• high bandwidth

• low latency

6

Today: NFS

• actually yesterday‘s solution

• does not scale: NFS head is bottleneck

7

Solution with Short-Term Expiry Date: High-Speed NFS

• does not scale either

• NFS head will be bottleneck again by tomorrow

8

Problematic Enhancement: Clustered NFS

• either head-to-head synchronization limits scalability

• or manual partitioning of global namespace is cumbersome

• NFS is not suitable for dynamical load balancing (inherent state)

9

Distributed File Systems

• major features:

• global namespace eases filesystem management and job flow

• scalable capacities and bandwidths

• load balancing

• cluster vs. parallel filesystem:

• no shared storage → many-to-many access to data

• proprietary solutions already there:

• IBM‘s GPFS

• SGI‘s CXFS

• Panasas‘ ActiveScale Filesystem (PanFS)

• EMC‘s Celerra MPFS/MPFSi (pka High Road)

• Lustre, PVFS2, ...

10

NFS as a Standard

• need for OS independent, interoperable, standardized solution

→ NFS is the ONLY standard!

• standards are good, because...

• they protect end user investment in technology

• they ensure a base level of interoperability

• while at the same time provide choice among products

• commonality leads to less training, simpler deployment, higher
acceptance...

11

A Brief History of NFS (1)

• NFS originally designed by SUN in the 80’s

• NFS 3 now widely deployed

• stateless by design, stateful in reality

• a bunch of auxiliary protocols: NLM, NSM, MOUNT

• 32 bit UIDs/GIDs

• RPC procedure ACCESS for client-side access check

• READDIRPLUS for efficient collection of file metadata within a directory

• rsize/wsize of max 32k

• proprietarily extended on the quiet: WebNFS, ACLs, Secure RPC,...

12

A Brief History of NFS (2)

• NFS 4: under development from 1998-2005

• primarily driven by Sun, Netapp, Hummingbird

• some University involvement (CITI UMich, CMU)

• now broadly available: Linux, Solaris, Windows, AIX,...

• lots of new stuff

• strong security flavors: GSS_API (Kerberos, LIPKEY,...)

• protocol consolidation (no NLM, NSM, MOUNT,...)

• only one port: 2049 (firewall friendly)

• delegation (cf. to CIFS oplocks)

• ACLs (Windows-like)

• string-based identities

• stateful by design (lease-based state)

• COMPOUND procedure for better performance

13

NFS 4.1 and Parallel NFS (pNFS)

• NFS 4.1: idea to use SAN FS architecture for NFS originally from Gary
Grider (LANL) and Lee Ward (Sandia)

• development driven by Panasas, Netapp, Sun, EMC, IBM, UMich/CITI

• folded into NFSv4 minor version NFSv4.1 in 2006

• future internet standard
(current draft 21: http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-
minorversion1-21.txt)

• major changes to NFS 4:

• sessions

• directory delegations

• pNFS (optional feature)

• standardization expected some time in 2009

14

Parallel NFS (pNFS): Generic Architecture

• separation of metadata path and data path (out-of-band global
namespace)

• built for interoperability and backwards-compatibility

• flexible design allows for different storage implementations (layouts)

15

What pNFS Does NOT Give You

• improved cache consistency

• NFS has open-to-close consistency

• perfect POSIX semantics in a distributed file system

• clustered metadata

• though a mechanism for this is not precluded

16

Parallel NFS (pNFS): New RPC Operations

• GETDEVICELIST (layouttype)

• returns all device IDs for a specific file system

• GETDEVICEINFO (device_ID, layouttype)

• returns the mapping of device ID to storage device address

• LAYOUTGET (layouttype, iomode, byterange)

• returns file layout

• LAYOUTCOMMIT (filehandle, byterange, updated

attributes, layout-specific info)

• updated layout visible to other clients

• timestamps, EOF attributes updated

• LAYOUTRETURN (filehandle, range)

• releases state for client

17

Parallel NFS (pNFS): New RPC Callbacks

• CB_LAYOUTRECALL

• tells a client to stop using a layout

• CB_RECALL_ANY

• tells a client that it needs to return some number of recallable objects, including

layouts

• CB_RECALLABLE_OBJ_AVAIL

• delegation available for a layout that was not previously available

• CB_NOTIFY_DEVICEID

• notifies the client of changes to device IDs

18

Parallel NFS (pNFS): How It Works (1)

• clients mounts a filesystem via MDS
mount mds:/ /mnt

• client gets root filehandle from MDS

• client gets list of device IDs for this

filesystem (according to supported

layouts)

• client gets mapping of device IDs to

storage device addresses

pNFS client

meta-data server

(MDS)

storage devices
P
U
TR

O
O

TFH
G

E
TD

E
V
IC

E
LI

S
T

G
E
TD

E
V
IC

E
IN

FO

19

Parallel NFS (pNFS): How It Works (2)

• clients looks up and opens a file
fd = open(„/mnt/file“,...)

• client: looks up a file

• server: returns file handle and state

IDs

• client: opens a file

• client: asks MDS about layout

for a file

• server: hands over layout for file,

containing device IDs and striping

information

pNFS client

meta-data server

(MDS)

storage devices
LO

O
K
U
P

O
P
E
N

LA
Y
O

U
TG

E
T

20

Parallel NFS (pNFS): How It Works (3)

• client reads/writes to a file
read/write (fd,...)

• client uses layout to perform I/O

directly to storage devices

(READ/WRITE)

• at any time MDS can recall the

layout

• at any time client can return the

layout

• client commits changes and returns

layout

• pNFS is optional, client can always
use NFS 4 I/O via MDS

pNFS client

meta-data server

(MDS)

storage devices
C
B
_L

A
Y
O

U
TR

E
C
A
LL

LA
Y
O

U
TR

E
TU

R
N

LA
Y
O

U
TC

O
M

M
IT

21

Parallel NFS (pNFS): Different Layout Formats

• a layout describes the location of file data, containing a list of device IDs
and striping information

• possession of a layout grants access to storage devices, resp. files

• file-based layout (part of NFS 4.1/pNFS standard)

• block-based layout: http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-
pnfs-block-08.txt

• object-based layout: http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-
pnfs-obj-07.txt

• PVFS2 layout

• GPFS layout

• ...

22

pNFS: File Layout

• only storage access protocol directly specified in NFS 4.1 standard

• significantly co-designed by NetApp, Sun, IBM and others

• file layout simple, may be heavily cached by clients

• access control possible via RPCSEC_GSS security flavor

23

pNFS: Block Layout

• highly influenced by EMC’s
design of Multi-Path File System
MPFS(i) (pka High Road)

• block layout uses volume
identifiers, block offsets and
extents

• secure authorization with host
granularity only, file-level
security cannot be enforced by
storage devices

→ clients must be trusted
(fundamental NFS problem ever
since)

24

pNFS: Object Layout

• Panasas’ contribution, based on NASD

design (Network-Attached Secure Disk)

developed at Carnegie Mellon

University,

later evolved into forthcoming SCSI

OSD standard (object-based storage

device)

• layout uses SCSI object command set

• space management built into devices

• designed for secure access and high-
performance data replication

• cryptographically secured credentials

(“capabilities”) needed to access

storage devices

25

pNFS: Generic Implementation

• modular and flexible design:
manufacturers need only provide
layout drivers to clients

26

pNFS: Linux Implementation

• prototype based on PVFS2:

http://www.pvfs.org

• developed at Argonne National Laboratory

• algorithmic file layout, supports round robin
striping (no LAYOUT<XXX>-Operations
necessary)

• no locking subsystem

• no data caching

• pNFS server is PVFS2 client

(pNFS↔PVFS2 proxy server)

• file layout driver will be completed soon:

http://www.citi.umich.edu/projects/asci/pnf

s/linux/

• block layout driver under development:

http://www.citi.umich.edu/projects/nfsv4/pn

fs/block/

• object layout: Panasas
Source: www.citi.umich.edu

27

pNFS: The Current State

• Linux: file layout, based on PVFS2 / based on NFS 4

• OpenSolaris: file (NFS 4) / object (OSD-1) layout driver will be completed
soon, patches available: http://opensolaris.org/os/project/nfsv41/
http://opensolaris.org/os/project/osd/

• Netapp: file layout, based on NFS 4

• IBM: file layout, based on GPFS

• EMC: block layout, based on MPFS(i)

• Panasas: object layout, based on ActiveScale PanFS

• Carnegie Mellon University: performance and correctness testing

28

Preliminary Benchmark Results: NFS vs. pNFS (1)

• source:

http://www.citi.umich.edu/techreports/

reports/citi-tr-05-1.pdf

• experimental setup:

• 40 x 2 GHz Opteron nodes with 2 GB

RAM each

• 23 clients, 16 storage nodes, 1 MDS

• RAID 0 for PVFS2

• Gigabit-Ethernet

• write experiment:

• (above) separate files

• each client spawns 2 write processes

• (below) single file

29

Preliminary Benchmark Results: NFS vs. pNFS (2)

• source:

http://www.citi.umich.edu/techreports/

reports/citi-tr-05-1.pdf

• experimental setup:

• 40 x 2 GHz Opteron nodes with 2 GB

RAM each

• 23 clients, 16 storage nodes, 1 MDS

• RAID 0 for PVFS2

• Gigabit-Ethernet

• read experiment:

• (above) separate files

• each client spawns 2 read processes

• (below) single file

30

Weblinks

• NASD: Network Attached Secure Disks: http://www.pdl.cmu.edu/NASD/

• Panasas: www.panasas.com

• EMC Celerra Multi-Path File System:

http://www.emc.com/products/detail/software/celerra-multipath-file-system.htm

• pNFS Information Portal: http://www.pnfs.com

• NFSv4 Status Pages: http://tools.ietf.org/wg/nfsv4

• Object-Based Storage Devices (now INCITS 400-2004):
http://www.t10.org/ftp/t10/drafts/osd/osd-r10.pdf

Object-Based Storage Devices V2:

http://www.t10.org/ftp/t10/drafts/osd2/osd2r03.pdf

• Eisler‘s NFS Blog: http://blogs.netapp.com/eislers_nfs_blog

• NFSv4.1 Bakeathon at OpenSolaris.org:

http://opensolaris.org/os/project/nfsv41/nfsv41_bakeathon/

Thank you!

Backup

33

NFS Direct, InfiniBand, RDMA & All That...

• RDMA (Remote Direct Memory Access)

• eliminates memory-to-memory copying
(zero-copy)

• OS bypass, low latency

• http://www.rdmaconsortium.org

• integrated into InfiniBand architecture

• integrated into 10GE-RNICs with iWARP
(iWARP = RDMA + TOE)

• iSER (iSCSI Extensions for RDMA)

• additional transport layer for iSCSI
communication (besides TCP)

• Linux RPC transport switch patches:

http://oss.oracle.com/~cel/linux-2.6/

• Linux NFS/RDMA project:

http://www.citi.umich.edu/projects/rdma/

• OpenSolaris NFS/RDMA:

http://opensolaris.org/os/project/nfsrdma/

34

Preliminary Benchmark Results: RDMA vs. TCP/IP

• source:

http://www.chelsio.com/nfs_over_rdma.ht

ml

• HW setup:

• 1 NFS server, up to 4 clients

• TCP/IPoIB-UD (MTU 2048),
TCP/IPoIB-CM (MTU 65520),
and IB RDMA transport at DDR

• Host TCP/IP, TOE, and RNIC (iWARP)
transport at 10GbE rate (MTU 9000)

• Results:

• NFS over IB/RDMA slightly
faster than 10 GbE

• RDMA transport faster than TCP/IP

• NFS over TCP

• IPoIB-CM significantly better
than IPoIB-UD

35

Today‘s Communication Protocol Stack

Source: www.hpcwire.com

36

Other Projects: Lustre

• “Lustre” is a portmanteau of “Linux” and

“cluster”

• originally developed by Cluster File

Systems, Inc., acquired by

Sun Microsystems, Inc. in 2007

• available under the GNU GPL

• integration with Linux/Ext3

• support for several high-speed

interconnects

• future:

• integration with Linux/Ext4 and Solaris/ZFS in
userspace!

• clustered metadata (in Lustre 2.0)

• integration with pNFS design?

Source: www.lustre.org

37

Panasas / pNFS / OSD Roadmap

Object Standard

Linux pNFS
client

pNFS Standard

Panasas pNFS
Product

1CQ07 2CQ07 3CQ07 4CQ07 1CQ08 2CQ08 3CQ08 4CQ08 1CQ09 2CQ09 3CQ09 4CQ09

OSD v2

committee

complete

OSD v2

draft std

OSD v2

final std

DF technology

transfer

pNFS client in

OS Distro‘s
Linux pNFS

client

V4.1 draft

standard

V4.1 final

standard

Alpha

Release

3.2 Test

Release

4.0 Production

Release

5.0 Full DF

Features

