
Embedding
Samba 4

Alexander Bokovoy
ab@samba.org
Samba Team

mailto:ab@samba.org

Slide 2

More than 10 years of «Samba in the box»
•1995 – Samba 1.9 release spurred number of
embedded Linux and FreeBSD devices

•1996/1997 – Whistle Communication's InterJet
•1997/1998 – Cobalt Qube family of embedded
GNU/Linux with Samba

With variety of operating systems:
GNU/Linux, FreeBSD, NetBSD, OpenBSD, Mac OS X, Solaris, ...

and architectures:
x86, PowerPC, MIPS, ARM, Sparc, ...

Slide 3

More than 10 years of «Samba in the box»
•Fast forward to 2006 – there are dozens of embedded
Samba devices:
➢ Linksys NSLU2, Buffalo LinkStation, Maxtor SharedStorage,
Lacie Ethernet Disk Mini, Intel SOHO NAS, and many more

➢ Now even Samba on Chip with Broadcom BCM4780P NaSoC
solution

•Versions used:
➢ Samba 2.0, 2.2, 3.0
➢ With little or no modifications of Samba core code
➢ Extensions are done usually via external programs or VFS

Slide 4

«Let hundred flowers bloom»
● Embedded Samba usage (so far):

➢ Small NAS device for Home and Office
 File sharing
 Print server
 Basic workgroup support

➢ Integrated gateway for external storage systems (USB-
attached drives, wifi-enablement)

➢ Streaming and media applications support (e.g.
ApplianceWare platform for Intel NAS)

➢ Integrated authentication for other applications (Proxy
servers, SSO for specific applications)

➢ Automatic back-up solutions

Slide 5

«Let hundred flowers bloom», part II
• New devices on the market allow for more
innovative approaches:
➢ Nokia 770 “Internet Tablet”, and others:

 Pervasive access, pervasive administration
 Rich client experience possible but requires exposure of

client-side Samba interfaces
➢ Linksys NSLU2:

 Micro-domain controller for masses:
 Take cheap home device and introduce full-featured ADS-

compatible domain controller for home use
 Automatic workload scenario generator with Samba 4 CIFS

proxy and nbench features
➢ PlayStation 3: ultimate home media center

Slide 6

Prerequisites for embedding Samba
• Device requirements

➢ Enough resources (RAM, disk space, CPU)

• Build system requirements
➢ Cross-compilation and toolchain support
➢ Easy way to include only needed functionality

 No need to add printing core if there will be no printing
support at all

• Integration requirements
➢ Easy way to manipulate configuration subsystem
➢ Performance monitoring facilities

Slide 7

Device requirements
• Anything with RAM ≥ 64Mb is good for
consideration
➢ Samba 4 has less memory consumption than Samba 3

• Anything with frequencies ≥ 200MHz (ARM9,
MIPS, PowerPC)
➢ DMA support is important
➢ Good context switching support is highly desired
➢ Decent peripherals, “higher LAN speed higher CPU”

• Disk space: ≥ 128Mb (40Mb for full Samba 4
install)
➢ Occupied disk space could be lowered significantly

Slide 8

Build system requirements
• Any operating system with decent file systems
and decent POSIX support
➢ GNU/Linux is the preferred choice today (Embedded

Debian variations, Denx.de, etc.)
➢ FreeBSD is supported as well (ACLs, xattrs)
➢ mmap support is very recommended

• Toolchain support: GCC is preferred, 3.4 is better
than 4.x for our goals
➢ Use vendor's compiler if the platform is better supported

with it (i.e., Cell BE)
➢ CPU transparency support is very welcomed
➢ Scratchbox is supported and generally gives better

results than a regular cross-compilation

Slide 9

Samba 4 build system
• Samba 4's build system:

➢ Modular design
➢ Support for private and public dependencies between

modules
➢ Both shared and static builds are supported
➢ Out-of-tree builds are supported
➢ The build system uses perl, GNU make, and m4
➢ Perl-based PIDL generator
➢ Two C-based code generators in embedded Heimdal

Slide 10

Build system, part II
• Red crosses of cross-compilation

➢ Macros for checking results of program's execution:
➢ AC_TRY_RUN

➢ Macros for checking libraries which might include
system ones:
➢ AC_CHECK_LIB

➢ Binary code generators:
➢ asn1_compile and compile_et

➢ Checks for run-time features (interfaces, /proc)

Samba 4 enjoys all of them

Slide 11

How to remove red crosses?
• Use native builds

➢ For example, ApplianceWare NAS toolkit for Intel IOP is
built natively using RPM on GNU/Linux on XScale (ARM9)
➢ Takes ages to compile (glibc takes 9 hours, Samba

takes 3 hours)
➢ For most of embedded x86 SBCs regular PC could be

used with appropriate compiler's flags
➢ For ARM targets Scratchbox.org is the right answer
➢ For Cell BE/PowerPC there is Full-System simulator

available for regular PCs

Slide 12

How to remove red crosses?
• If nothing helps, cross-compilation could be fixed

➢ For building Heimdal's code generators we need to
configure Samba 4 for host system
➢ Heimdal uses Samba'4 config.h
➢ Out of tree build is required
➢ Use –srcdir option to specify original source tree

➢ After asn1_compile and compile_et are available, they
can be copied to bin/ of the main tree to satisfy make
rules

➢ Configure main tree for target system as usual
➢ Build it!

Slide 13

How to remove red crosses?
• What's about AC_TRY_RUN?

➢ AC_TRY_RUN has third argument “cross-compilation”
➢ If not specified, AC_TRY_RUN will stop during cross-

compile
➢ All Samba 4 AC_TRY_RUN use cases safely continue

configuration process during cross-compilation

• A developer should know target's platform better
than autoconf:
➢ Use autoconf's cache to specify proper values for

AC_TRY_RUN tests
➢ AC_CHECK_CACHE() wraps every AC_TRY_RUN so every

test can be safely pre-configured

Slide 14

Finegrained Samba 4 builds
• Samba 4 isn't a single program

➢ It isn't a monolith code block also
➢ Includes sub-systems, libraries, modules, and binaries
➢ Each component links only with required components

• Each binary can be made small as much as
possible
➢ Libraries can be created easily out of sub-systems using

definitions in config.mk files
➢ Hard facts: we have 106 libraries and 90 modules

currently
➢ Binaries can be linked against only required libraries,

including external ones

Slide 15

Demo
• Samba 4 registry editor running in scratchbox for
Maemo platform (ARM architecture)

Slide 16

Demo running on real device
• The same Registry Editor running on a real
device:

Slide 17

Demo running on real device
• The same Registry Editor running on a real
device:

Slide 18

Demo running on real device
• Sample session of accessing smbd from an
smbclient running on the same device:

Questions?
Alexander Bokovoy

ab@samba.org
Samba Team

mailto:ab@samba.org

