Samba as Active/Active HA-Service

Dipl.-Ing. Thomas Merz
Date: 04/26/2006
merz@atix.de
About ATIX

HA-Cluster Basics

Cluster Filesystem Basics

Samba and Clusterfilesystem GFS

Perspective
ATIX business segments

Consulting
- Linux in the datacentre (Cluster-solutions, HA)
- Storage networks
- Availability analysis / Catastrophe precaution

Services
- Competence Center
- Proof of Concept
- Project attendance
- Installation / Production
- Workshops
ATIX – couple of references

- **Trade Fair Leipzig**
 - Infrastructure for Unix/Windows user- and group data of the employees
 - High Availability platform
- **IP-Tech**
 - Infrastructure for Internetservice Provider (TOP 5, CH)
 - Business Continuance
- **Trade Fair Munich International**
 - Infrastructure for Webservices
 - High Availability platform
- **Int. Pharma Group**
 - Consulting for Pharma-IT Storage environment
 - Concepts for catastrophe precautions
Modular conception of Enterprise IT-platforms
Case Study: NAS

- Reduction of capital lockup
- Better utilization of Ressourcen
- Protection of investment
- Scalability as needed
- Better Availability
- Industry Standard Hardware
Example: Trade Fair Leipzig

Key Features:
- Parallel NFS-Server
- Active/Active NFS, CIFS/SMB
- Active Directory Integration
- Dynamic Windows/Unix User Mapping
- ACL Support
- User, Group Quota
- ~ 300 User
- Home and Group Shares
- Replacement for a Windows HA-Cluster solution

Customer's benefits: Performance-Increase, Reduction of costs, better availability

NFS (Unix), Samba (CIFS)
About ATIX

HA-Cluster Basics
Cluster Filesystem Basics
Samba and Clusterfilesystem GFS
Perspective
HA Cluster Active/Passive

Concept:
- Only one node active at any time
- The second node is in stand-by mode
- No performance cutbacks in case of node failure
HA Cluster Active/Active

Concept:
- Each node hosts different services
- Each node is active and passive
- Performance cutbacks in case of a failure
HA Cluster N+1

Concept:
- More nodes as necessary are used (N+1)
- A node can be down without a performance cutback of services
- N+2-, N+3- concepts are possible
HA Cluster: Split Brain Problem

Questions: „What happens, if the cluster falls apart?“

Server A writes to the filesystem

Server B writes to the filesystem

I'm the only one!

Data corruption?!?
Stateless and Stateful Services

Problem of transparent failover

The service has to continue with the exact data states on the 2nd node as it „left“ the 1st node

Stateless services don't have data in memory

=> Transparent failover is no problem

Services saving conditions in memory need a way to make them persistent
Stateless and Stateful Services

Stateful services:

- Perfect example: DBMS
- Solution: Write-Logs, Redo-Logs etc.
- Services like NFS/CIFS can be stateful
- HA-Software needs compatibility modes to failover stateful services correctly
 - Realization via resource types
 - Data loss happens if failover mechanisms don't support stateful services
About ATIX

HA-Cluster Basics

Cluster Filesystem Basics

Samba and Clusterfilesystem GFS

Perspective
Scalability
Scalability of a Storage-Cluster

SAN + Linux + Data Sharing = Incremental Computing
• Incrementally and independently add compute, I/O and storage capacity
• Avoid architectural or application changes
• Lower cost of deployment and management
Shared Storage Cluster

- Clusternodes with local disks
- Centralized storage pool

- Data Sharing
- Peer to Peer communication
- Cluster Filesystem
- Server Cluster
 - Active/Active
- Storage Cluster
 - Storage Pooling
 - Volume Manager
- Storagenetwork (FC-SAN)
- Management ??
Diskless Shared Root Cluster

Clusterknoten without local disks

Centralized storage pool

Data Sharing
Shared Root Partition (/)
Cluster Filesystem
- Data
- System
- SSI on FS Level
- Management !!
Scalability
Performance
Storage Cluster
Global Filesystem (GFS)

- Development since 1995
 - University of Minnesota - Sistina - Red Hat
 - Version 6.1
- Symmetrical cluster filesystem
- POSIX compatible filesystem
- Direct IO (Databases)
- HA Locking Server (GULM)
- Distributed Lock Manager (DLM)
- Online resizeable (no downsizing!)
- Context Dependent Path Names
- Cluster Volume Manager
- ACLs, Quotas, Multipath, ...
About ATIX

HA-Cluster Basics

Cluster Filesystem Basics

Samba and Cluster filesystem GFS

Perspective
Samba Challenges
Active/Active

Servertype
- Domain/ADS Member
- PDC/ADS Server??

Usermapping
- Persistent (LDAP, RID-mapping, ..)

Filesystem
- ACLs

Parallel Access???
- Share1->Server1 Share2->Server2
Samba Challenges
Active/Active

- TDB-Files
 - GFS vs. no GFS
- Single Sign-On for Windows und Unix/Linux
 - Windows user (PDS/ADS) -> Server type
 - Unix user (passwd, yp/nis, ldap) -> Server type
- Virtual name and server name
- Config file per share vs. global config file
- Winbind failover vs no winbind failover
Samba and Cluster Filesystems

- Posix-ACLs map Windows rights to Unix filesystems
 - Windows clients differentiate between NT-ACLs and Windows 2000 ACLs
 (acl compatibility = auto|winnt|win2k)

- Temporary Samba files (tdbs) need to be host dependent in a cluster setup (CDSL)
 - They can also be stored in the RAMFS to gain better performance
Samba Active/Active

Samba Active/Active on the same share?

- Different servers should not export the same shares in r/w mode (ro makes sometimes sense)
- Parallel r/w is no problem for the cluster filesystem
- Parallel r/w is a problem for Samba itself, if the upper level application does not have its own locking mechanisms. Samba has no „cluster wide“ locking mechanism
- With the help of a cluster filesystem, shares can be moved easily between different servers
Usermapping

What ist mapped?

- Windows user IDs (SIDs) to Unix user-IDs (winbind)
 - Static tables
 - Via LDAP
 - Via RID mapping
 - Persistent mapping is very important for HA-clusters
- Unix user to windows user ID mapping is done repeatable & dynamically
Single Sign On

Identical Users (Names, passwords and identities)

- Linux must be able to compare against „Windows passwords“ (Kerberos)
 - PAM, Winbind
- SIDs/RIDs need to be mapped to Unix UIDs/GIDs
 - Static mapping e.g. *Administrator* => *root*
 - Automated mapping e.g.
 - *Windows User thomas* => *Unix User thomas*
Samba offers IDMap Backends for user authentication

- **Standard:** TDB
 - Mapping is not persistent
- **Alternative:** LDAP
 - Certain schema with Unix UserID and Windows SID
- **Alternative:** RID mapping
 - Windows User ID has a SID part and a RID part
 - The RID part is mapped repeatable to Unix UIDs
Some Samba Pitfalls

Servernames and VIPs

- The servername is associated with a SID and is registered as a computer within the domain.
- The virtual clustername (the virtual IP) must not be identical to the servername.

Config files

- Standard: One config file for a virtual clustername/virtual IP setup (multiple smbd/nmbd services set up on the server, one per failover group).
- Alternative: One config file is used for all virtual HA-Samba configurations and adjusted if failover is necessary (one smbd/nmbd service running on the server).
Winbind Failover vs. no Failover

- Each Samba service uses the same instance of winbind
 - Standard: All Samba services use this „centralized“ winbind
 - Winbind „does not failover“
- Each virtual clusternamel/virtual IP samba instance uses its own version of winbind
 - Winbind „fails over“ if the associated virtual clusternamel fails over
About ATIX
HA-Cluster Basics
Cluster Filesystem Basics
Samba and Cluster filesystem GFS
Perspective
Using GFS and sharedroot cluster configurations are changeable while the cluster is online.

CIFS and NFS are only some of the possibilities such a cluster offers.

If Samba could handle file locking on file basis in cluster compatible way, new cluster types would be possible.
Any Questions?

Thank you!

Atix GmbH
Einsteinstr. 10
85716 Unterschleißheim
www.atix.de
info@atix.de