
Linux, Samba and ACLs:
past, present, and future

Andreas Grünbacher
Developer
SUSE Labs, Novell

Linux, Samba and ACLs

POSIX and POSIX ACLs

Windows/CIFS ACLs

Samba 3: POSIX ACL ↔ CIFS ACL mapping

Samba 4 today: CIFS ACLs in user space

Beyond?

© May 4, 2005 Novell Inc.
3

Traditional POSIX model

Model
• Each FS object has an owner and an owning group
• Permission sets for owner, owning group, and others
• Read, Write, Execute permissions

$ ls -l file
-rw-r--r-- 1 agruen users 5 4 May 4 00:00 file

Can be viewed as a minimum, three-entry POSIX ACL:
$ getfacl –omit-header file

user::rw-
group::r--
other::r--

© May 4, 2005 Novell Inc.
4

POSIX permission checking (1)

Process requests access. Relevant are:
• effective user ID,
• list of group IDs,
• set of requested permissions.

Two phases:
• Find the best-matching ACL entry,
• Check if the chosen entry contains the requested

permissions.

owner: agruen
group: users
user::rw-
group::r--
other::r--

© May 4, 2005 Novell Inc.
5

POSIX ACLs

•Each ACL entry specifies a type, qualifier, and a set of
permissions.
•Permissions are still only Read, Write, and Execute.
•Permissions for arbitrary additional users and groups:

$ setfacl -m user:tux:rw,group:mascots:r file
$ getfacl file
owner: agruen
group: users
user::rw-
user:tux:rw-
group::r--
group:mascots:r--
mask::rw-
other::r--

•Inheritance model: Default ACLs (next slide)

© May 4, 2005 Novell Inc.
6

POSIX ACLs: Default ACLs

Default ACLs are similar to access ACLs, but they define
which permissions new FS objects obtain:
•Without a default ACL, the umask determines the file's
permissions.
•With a default ACL, the default ACL determines
permissions, and the umask is ignored.

Static inheritance: changing the default ACL has no effect
on existing child objects.

© May 4, 2005 Novell Inc.
7

POSIX ACLs: Default ACLs (2)

$ setfacl -d -m user:tux:rwx .
$ getfacl --omit-header .
user::rwx
group::r-x
other::r-x
default:user::rwx
default:user:tux:rwx
default:group::r-x
default:mask::rwx
default:other::r-x

$ touch file2
$ getfacl --omit-header file2
user::rw-
user:tux:rwx #effective:rw-
group::r-x #effective:r--
mask::rw-
other::r--

© May 4, 2005 Novell Inc.
8

POSIX permission checking (2)

Process: effective UID and GIDs; requested permissions
Again, two phases:

• Find the best-matching ACL entry (the ACL entry order
does not matter)

• Check if the chosen entry contains the requested
permissions

owner: agruen
group: users
user::rw-
user:foo:rw-
group::r--
mask::rw-
other::r--

Named user entry may be “shadowed” by owner entry

© May 4, 2005 Novell Inc.
9

CIFS ACLs

(CIFS has DACLs for permissions and SACLs for auditing)
•DACLs are ordered lists of entries.
•Each entry specifies whether the entry is access-allow or
access-deny, a SID, a set of permissions, and a set of in-
heritance flags.
•Permissions include the equivalent of read, write, ex-
ecute, things like create, delete, change permissions,
take ownership, etc.
•Change permissions and take ownership allow delegation.
•Effective and inheritable permissions are not split.
•Semi-dynamic inheritance: changing inheritable permis-
sions of a directory changes child objects' permissions.

© May 4, 2005 Novell Inc.
10

CIFS permission checking

Process: list of SIDs (users and groups treated alike);
requested permissions
Go through the list of ACL entries:

• Skip entries that don't apply to the requesting process.
• Deny access if an access-deny entry denies a requested

permission.
• Grant all requested permissions that matching access-

allow entries allow. Grant the access if all requested
permissions have been granted.

If any permissions have not been granted when reaching
the end of the ACL, deny access.

© May 4, 2005 Novell Inc.
11

Samba 3: POSIX ACLs ↔ CIFS ACLs

User mapping:
• Owner ↔ current owner
• Owning group ↔ current

owning group
• Other ↔ Everyone

Permission mapping:
• r → Read
• w → Write
• x → Execute
In the reverse direction, any

Read/Write/Execute bit
adds r/w/x.

sets of
perms

© May 4, 2005 Novell Inc.
12

Samba 3: POSIX ACLs ↔ CIFS ACLs (2)

Directory / inheritable
permissions:

• Owner ↔
CREATOR OWNER

• Owning group ↔
CREATOR GROUP

© May 4, 2005 Novell Inc.
13

Mapping problems

•Lossy conversion: permissions are missing on the POSIX
side. The POSIX ACL model is hard/impossible to extend.
•Accumulation vs. selection: Mapping POSIX onto CIFS
accurately would require mixed access-allow/access-deny
entries; Windows GUI cannot handle this.
•Static vs. dynamic inheritance: CIFS inheritance flags
mean something different than what Samba uses them for.
•In CIFS, everything is a SID; even groups can own files.
•Abstract owner vs. user-specific entry -> chown
•Owning group concept not really used under Windows...

© May 4, 2005 Novell Inc.
14

Samba 4: CIFS ACLs

Samba 4 implements CIFS ACLs in user-space: no lossy
mapping anymore!
•No kernel changes, so portable
•Inconsistent view between Samba and POSIX applications
•When CIFS permissions are defined, POSIX applications
should really be governed by the CIFS ACL model, but they
will only see traditional POSIX or POSIX ACLs.
•Last writer approach (e.g., NetApp): When a CIFS ACL is
set, switch to the CIFS model. When a POSIX ACL is set,
switch to the POSIX model.

© May 4, 2005 Novell Inc.
15

Other ACL models

NetWare ACLs (called “trustees” there)
•Less complicated, but also more limited than CIFS ACLs.
•Only those files to which a process has access to are
visible. Visibility propagates up to the root => ACLs
become large. Reading a directory entry requires a
permisison check.
•Requres client modifications!

NFSv4
•Model very similar to CIFS, but:
•Inheritance is static, so it's conceptually different

More information: http://www.suse.de/~agruen/

Thank you!

General Disclaimer
This document is not to be construed as a promise by any participating company to
develop, deliver, or market a product. Novell, Inc., makes no representations or
warranties with respect to the contents of this document, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc., reserves the right to revise this document and to make changes to
its content, at any time, without obligation to notify any person or entity of such
revisions or changes. All Novell marks referenced in this presentation are trademarks or
registered trademarks of Novell, Inc. in the United States and other countries. All third-
party trademarks are the property of their respective owners.

No part of this work may be practiced, performed, copied, distributed, revised, modified,
translated, abridged, condensed, expanded, collected, or adapted without the prior
written consent of Novell, Inc. Any use or exploitation of this work without authorization
could subject the perpetrator to criminal and civil liability.

